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ABSTRACT

Collocation methods using both cubic polynomials and splines
in tension are developed for second order linear singularly-
perturbed two-point boundary value problems. Rules are developed
for selecting tension parameters and collocation points. The
methods converge outside of boundary layer regions without the
necessity of using a fine discretization. Numerical examples

comparing the methods are presented.
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i 1. Introduction

We consider the numerical solution by collocation methods of
the singularly-perturbed second-order linear boundary value problem
(1.1) Ly = ey'' + p(x)y' + gq(x)y = £(x) , a<x<b,

(1.2) ally(a,e) + alzy'(a,e) = A, a21y(b,e) + azzy'(b,e) =B ,

where ¢ is a small positive parameter. The functions p,gq, and £
are assumed to be smooth functions of x on [a,b] which, along with
aij' i, j=1, 2, A, and B, may depend on ¢ provided they are
bounded as € - 0. We further assume that (1.1,2) has a unique
solution on [a,b] for all € sufficiently small.

The problem (1.1,2) has been intensively studied analytically
(cf. Cole [6], Eckhaus ([11l], or O'Malley (18]) and it is known

that its solution generally has a multiscale character, i.e., it

features regions called "boundary layers" where the solution
varies rapidly. Away from the boundary layers, the solution is -
approximately determined by neglecting the evy'' term in (1l.1)

and perhaps one or both of the boundary conditions (1.2).

The problem has also been extensively studied numerically, §
and it is known that most classical methods fail when £ is small
relative to the mesh width h that is used for the discretization ]
of the operator L. There are, however, several finite difference
methods (cf. Abrahamson, Keller, and Kreiss (1], Berger, et al. (4],
Il'in [16], Kreiss [17], and Pearson [19,20]), Galerkin-finite
element methods (cf. Hemker (15], de Groen and Hemker (10], and
Heinrich, et al. ([13,14]), and methods based on singular perturba-

tion theory (cf. Flaherty and O'Malley [12] and Steele [28]) that

‘ do not require h/e to be small. /'.IR.FORCE OFFICE OF SCIENTIPIC RESEARCH (AFSC)
; N TICE OF TRANSMITTAL TO LDC
T.." cehnieal v o« s been rovicwed and is
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Our aim in this paper is to show that collocation methods
with either piecewise polynomials or splines in tension can furnish
accurate numerical approximations of (l1.1,2) when either h/¢ is
small or large. Splines in tension were first used by Schweikert [26]
as a means of eliminating spurious oscillations in curve fitting
with cubic splines. They have been subsequently studied by Cline
[5], Pruess [22], Spiath (27], and de Boor [9, Chap. 16]. Between
knot points a spline in tension, or a taut spline in the language
of de Boor [9], is an L- spline satisfying the differential equation

(1.3) (tr'* =~ pzr)" =0,

subject to appropriate continuity conditions at the knots. The
quantity p is called the tension parameter. When p = 0, 1 is a
cubic polynomial spline; however, when p > 0, the solution of
(1.3) is a linear combination of the four functions 1, x, ePX, e PX,

The exponential functions should be better suited than polynomials

at following the rapid variations that are typically found in

singular perturbation problems. Indeed, exponentials have been
used in the Galerkin methods of Hemker [15] and de Groen and Hemker
[10], Il'in's difference method [16], and the singular perturbation
methods of Flaherty and 0O'Malley [12] and Steele [28].

Equation (1.3) is the same as that for the transverse deflec-
tion of a classical Euler-Bernoulli elastic heam that is subjected
to a tensile force proportional to pz; hence, the name spline ;
in tension. |

In Section 2 of this paper, we construct a basis for the

tnesion splines and use it to obtain the collocation equations.
In Section 3, we obtain asymptotic approximations to the soclution

of (1.1,2) in the two special cases when |p(x)| > P > 0 and when




p(x) = 0 on [a,b] and use these to select tension parameters.

In Section 4, we discuss the selection of collocation points that
are in some sense optimal and present some formal error estimates
in regions not containing boundary layers. 1In Section 5, we
apply our methods to some examples; and in Section 6, we discuss
the results.

Not surprisingly, the results ‘indicate that taut splines
provide better approximations within boundary layers and poly-
nomials provide better approximations elsewhere. This suggests
the possibility of applying tension only within boundary layers.
This would either require an a priori knowledge of the location
of the boundary lavers or an automatic procedure for finding them.
A tentative procedure for automatically lc~rating boundary layers
is presented in Section 5.

We anticipate that our methods would be useful on other pro-
blems, such as initial-boundary value problems for parabolic partial
differential equations involving diffusion, convection and/or
reaction.

2. Collocation Equations and the Tension Spline Basis

In the usual method of collocation (cf. Ascher, Christiansen,
and Russell [2], de Boor and Swartz [8], Russell [23], or Russell
and Shampine [25]), one introduces a partition

Ay = {a = Xg < X3 < . .. <Xy = b}

of [a,b] into N subintervals and approximates the solution of
(1.1,2) by piecewise polynomials yh(x) £ M(AN,k,m), where

M(AN,k,m) = {weCm[a,b]Iw st(Ii); i=12,...,N}.

restr. to Ii
Here

T; % (xyoqpe%y)




and Pk(E) denotes the class of polynomials having at most degree
k on E. The dimension of M(An,k,m) is N(k-m) + m + 1 and one
determines yh(x) by collocating at N(k-m) + m - 1 points
z, € [a,b], i.e., by enforcing
Lyh(zi) = f(zi) , 1=1,2,...,N(k-m) + m - 1 ,

and by requiring Yh to satisfy the boundary conditions (1.2).
Convergence and the order of accuracy of these methods depend on
m,k,AN, and the choice of zi and are discussed in, e.g., [8].
However, Lyh should exist and necessary continuity conditions on
M(AN,k,m) are k > 2 and m > 1. 1In addition, de Boor and Swartz [8]
show that the maximal order of convergence in the largest sub-
interval length is achieved by selecting the collocation points
as an appropriate number of Gauss-Legendre points on each subinterval.

Unfortunately, collocation at the Gauss-Legendre points with
piecewise polynomials is known to behave rather poorly on singularly-
perturbed problems for any partition where € is much smaller than
the minimum subinterval length (cf. Hemker [15] and our Example 1
in Section 5). It would be overly restrictive and in most cases
impractical to require a partition with subinterval lengths of
order € and we seek to avoid this situation by changing the loca-
tions of the collocation points and/or adding expcnential functions
to M(AN,k,m). Thus, we also consider approximations
yh(x) £ E(AN,k,m,g), where

{w e cC™[a,b]|w

11

E(AN,k,m,g) e span (P, (I;),

restr. to I,

i
pix/ni -oix/hi '
e , e Y; 1i=1,2,...,N}
znd
hi =Xy = XL g i=1,2,...,N.
The «uantities Y i=1,2,...,N, are called tension parameters
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and will subsequently be selected to approximate the rapidly 1
varying part of the exact solution of (1l.1,2).

In this paper, we have confined our attention to collocation
with piecewise cubic polynomials belonging to M(AN,3,1) and splines
in tension or taut splines belonging to E(AN,l,l,g), which are
both spaces of dimension 2(N+1l). For reasons of computational
convenience and efficiency, it is usual to construct a basis for
M(AN,3,1) that satisfies the Cl[a,b] continuity requirement and
where each element has support extending over only two subintervals.
We proceed similarly for E(AN,l,l,g); thus, we write yh(x) in the
form

(2.7) Yp{x) = eyt (xsp) + 4,0, (x,p)]

N 12

i=0

where the basis ti(x,g), ci(x,g), i=20,1,...,N, is defined in

terms of the "canonical basis elements" and Ny as follows:

"o

1
) oo oxelxg ;,x.]

(2-8)ri(x,g)=J Pi+1) » x € [xg0x; 41

0 , otherwise *

and

¢ 1
~hyny (— . p;) » x e [x; g,%;]

0 , otherwise

The functions n,(s,p) and n,(s,p) are defined on 0 < s < 1 as




sinh p/2(2s-1)

1l ~-s + KO {28 - 1 -

(2.10)  ng(s/p) sinh 0/2 ) * ‘

= 1 - 7 _ Ssinh p/2(2s-1) 1 _ cosh p/2(2s-1)

[

where

(2.12) K, = 1/pw(p/2), K, = (1/f)coth P/2, w(z) = coth z - 1/z .
Observe that ur and ny each satisfy the differential equation
(2.13) (ny' = e%n)'" =0, 0<s<l , k=01,

subject to the boundary conditions

' '
(2.14) nk(O,p) = 0gx + Mg(lrp) =0, Ny (0,0) Six ﬂk(lpp) =0, k =0,1,

'
where G'k denotes the Kronecker delta and, in this context, ( )
1

denotes differentiation with respect to s. Using (2.14) and (2.7-9),

we see that c; = yh(xi) and di = dyh(xi)/dx , 1i=20,1,...,N.

As p tends to zero no and nq approach the usual canonical basis
elements for M(AN,B,I), i.e., that of a cubic Hermite interpolating

polynomial on 0 < s < 1. Thus,

(2.15)  ng(s,0) = (1-s)2(1+2s) + 0(pD) , ny(s,p0) = s(1-5)% + 0(p%) .
For large values of p U and ny become
(2.16) ng(s,p) =1~ s - 3%7 [2s-1+e PS5 P (178)y 4 g(e™P/p)
= __p-1 eea=Ps, _ _ 1 _.~p(l-s) -p
ny (s,p) = 5 (0=2) [l1-s-e "] 3To=37 [s-e 1 + 0(e "/p) .

Thus, in the interior of (0,1) Ngy and n, are asymptotically given

by the linear functions

nO(S,D) ~ (1-s) - (2s8-1)/(p=-2) , nl(s,o) ~ (1-8)/p - (28=1)/0{(p-2)

Both Ny and n, converge uniformly on 0 < s < 1 as p ~ » to 1-s and 0,




re

i-................‘..-.-....l......“-.-...“‘-..m_.nI -

respectively; however, their derivatives exhibit boundary layer
behavior at s = 0 and 1. Since T, and o, (via. (2.8,9)) behave

similarly at the knots Xi_qr %50 X490 the numerical approximation

Y, may have internal boundary layer jumps of height 0(1/¢) even

when the exact solution is smooth. We demonstrate this phenomena

in example 1 of Section 5. The functions Ng and n, are plotted

for a small and a large values of p in Figures la and lb, respectively.
A discrete system for determining ci'di’ i=2o0,1,...,N1is

obtained for a given set of tension parameters pi,i=l,2,...,N by

collocating at 2N points zi,i=l,2,...,N on [a,b] and by satisfying

the boundary conditions (1.2). For simplicity we place two collo-

cation points symmetrically disposed on each subinterval, i.e.,

(2.17) zZi—l = xi—l + tihi v 2oy xi-l + (l-ti)hi , i=1,2,...,N,

for an appropriate choice of ti e {0,1/2). Then, using (2.17),

(2.7-9), and (1l.1) in (2.4) we find the discrete system on Ii to

be
— - ~
zil(ti) Qiz(ti) 2i3(ti) 2i4(ti) Cio1 fi(ti)
(2.18) -1
C.
1
43
L
i = l,z,..-,N
where
2 1 ~ ] ~
2,1 (8) = (e/h;"Ing (t,0;) + (p;(£)/h)ny(t,0,) + q (E)ng(t,0,)
2'12(1-'-) = (E/hl)nl (tl.oi) + Pi(t)nl(tloi) + ql(t)hlnl(t,ol) '
(2.19) 2 , . ~
214(t) = —[(C/hi)nl (l-tr.oi) = Pi(t)nl(l-tyoi) + qi(t)nl(l-t'pi)] ’

7

#
i
!
%




e e s St e e ————

and %i(t) = f(x;_,+th), etc. Substituting (2.7-9) into (1l.2)
gives the boundary conditions
@110 * @129 T A, @y + aydy =B .

Thus, the 2(N+1) dimensional uiscrete system (2.18-20) has the

(2.20)

following structural form

X X C

0 A .
X X x X d %l(tl) 4
X X x X cy El(l—tl) J
X X X X dl .
(2.21) X X X X . = . '
X X X X . %N(tN)
X X X X Cy EN(l-tN)
X X dN B
_ ) 4 L . -

where each x denotes a nonzero entry. We solve (2.18-20) for
prescribed values of Py and ti’ i=1,2,...,N, by an alternating

row and column pivoting algorithm due to Varah [29]. This procedure

is numerically stable and requires no storage additional to that
needed for the nonzero entries in (2.21).

3. Asymptotic Solutions, Green's Functions, and the Selection of

Tension Parameters

In this section, we present asymptotic approximations of the
solution of (1.1,2) and of its Green's function. They will be
used to select the tension parameters and in Section 4 to select
collocation points. We shall not attempt to do this in all gener-

ality, but rather by considering two special cases of the problem




(3.1) Ly ey + p(x)y +qx)y =£(x) , a<x<b,

{(3.2) yla,e) = a4, y(b,e) =B ,
when (Problem 1) [p(x)| > p > 0 and (Problem 2) when p(x) = 0,
q(x) < g < 0 for xe[a,b]. In either case, any boundary layers
are at the ends of [a,b]; thus, there are no turning points and

no interior nonuniformities. We consider such problems among the

examples of Section 5.
The Green's function G(x,§) associated with the operator L

and homogeneous boundary conditions (3.2) on the interval [a,b]

satisfies
(3.3) L*G(x,&) = EGEE - (p(E)G)5 + g(§)G = 0,(a,x) u (x,b),
(3. 4a) G(x,a) = G(x,b) = 0 ,
(3. 4b) Gx,xT) - G(x,x") =0,
(3. 4c¢) Gg(x,x+) - Gg(x,x-) =1/ ,

where the subscript & denotes partial differentiation.

We use the WKB method to construct our asymptotic approximations
of the solutions of (3.1,2) and (3.3,4). Since the details of
this method are well known (cf. Wassow [30]), we only present the
results and omit their development.

3.1. pProblem 1: |p(x)| > p > 0 for xe [a,b]

We consider the case when p(x) > 0 on [a,b]. The case when ;
p(x) < 0 is handled in an analogous manner. Using the WKB method,
we find the following 0(e) approximations to the two fundamental
solutions of (3.1) (cf. Hemker [15]):

3.5a,b) Y(x,Z) = expéfgq(z)/p(z)dz} , T(E,x) = expl-/¥(p(z)/e~a(z)/plz))dz .
£

The solution of (3.1) satisfying the boundary conditions (3.2) is

given by




(3.6a) y(x,e) = YR(x) + [A - YR(a)]H(a,x) + 0(¢)

where

Y, (x) = BY(x,b) - P2y /p(2)) Y (x,2)dz .
X

The term {A - YR(a)]H(a,x) is exponentially small outside of a

(3.6b)
boundary layer of width O(e) near x = a. For a < x < b y(x,e) ~ Yp(x),
where YR(x) is the solution of the reduced problem

(3.7a)

p(x)Yl;(x) + q(x)¥(x) = £(x) , a<x<b ,

(3.7Db) YR(b) =B ,

)
obtained by neglecting the ey term in (3.1l) and the boundary con-

dition (3.2) at x = a. The problem with p(x) < 0 has a solution
with a boundary layer near x = b and a reduced solution satisfying
(3.7a) subject to the initial condition YR(a) = A.
In a similar manner, an 0(e) approximation to G(x,f) satisfying
(3.3,4) is found as
(3.8a) G(x,8) = a(x){N(§,b)¥*(a,b) [I(a,x) - ¥Y*(x,a)]
neE,x) , a<ég<x

-M(a,x)¥*(a,&) + } + 0(e)
Y*(x,£) ’ Xiﬁib

where
(3.8b) a(x) = - p(x)/[p2(x) - 2eq(x) + ep (x)] ,

v* (x,8) = exp { f5(q(z) - p (2))/p(z)dz ,
X

(3.8c)

and MT(E,x) is as in (3.5b). As a function of &, G(x,£) has boundary

and £ X .

>

layers at & = b~

3.2. Problem 2: p(x) =0, a(x) < g < 0 for xela,b].

In this case, the WKB method gives the following 0(ve) approxi-

mations to the two fundamental solutions of (3.1) (cf. Hemker ([15]).

(3.%a,b) Hl(x,i) = q(x)-l/4ﬂ(x,€) ; Hz(x,i) = q(x)-l/4H(S,X)

10
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where for this problem

(3.9¢) n(g,x) = exp {(-r* /=q(z) /€ az} .
€

The character of the solution depends critically on the sign of
g(x). When g(x) < 0, the solution is exponential; and when q(x) > 0,
the solution oscillates rapidly with period 2n/e/q(x) . We would
not expect taut spline approximations to be useful in the oscillatory
case and, thus, we confine our attention to problems with g(x) < 0
on [a,b]. The use of "splines under compression” for oscillatory
problems is currently under investigation by Coyle and Flaherty [7].

Using (3.9), the solution of (3.1,2) is given as

(3.10)  yix,e) = [A - £(a)/q(a)] [q(a)/qx)1 41 (a,x)
+ [B - £(b)/q(d)]1[qd) /qx) 1Y 4N (x,b) + £(x)/q(x) + 0(/E) .
Outside of the boundary layers, which extend over 0(/e) neighbor-
hoods of x = a and b, the sclution y(x,g) -~ YR(x), where YR(x) is
the solution of the reduced problem
q(x)¥p(x) = £(x) ,

obtained by neglecting the ey" term in (3.1) and both boundary
conditions (3.2).

Problem 2 is self-adjoint, so the WKB approximations (3.9)
can also be used to construct the following 0(1l) approximation to

G(x,£) satisfying (3.3,4):

(3.11)  G(x,€) = 3le’qa®)1™ (@, 001 (a,8) + 10, bIN(E,b)

mE,x) » a<g p 3
- + 0(/e)} .
I(x,8) , x £ b

A
A

A
A

? As a function of &, G(x,£) has boundarv layers on both sides of

£ = x, and is unbounded as 0(l//€) as € -+ 0.




(3.12a)

(3.12b)

(3.13a)

(3.13b)

3.3. Selection of Tension Parameters

We want the tension parameters to approximate the rapidly
decaying solutions (3.5b) or (3.9) of Problems 1 or 2, respectively,

and so we choose Pi on the subinterval Ii as !

Ip(x)) /e = alx ) /p(x )|, if [p(x;_;)+p(xy) [/e > |q(xi_l)+q(xi)|k

Di = hi e
=lalx, _11+a(x;11/2e , if |p(x;_j)+p(x;)[/e < [a(x;_,)+a(x;)| t
i=12,...,N,

where |
i-1 , if [P(xi_l) + P(xi)]/e >0 y

k = . E

i , if [p(xi_l) + p(xi)]/s <0 F

Thus, for Problem 1 with p(x) > 0 on [a,b] i
pi = hi!p(xi_l)/e - q(xi_l)/P(xi_l)l 14

and for Problem 2

py = hy Y=lalx; ;) + a(x)]/2¢ .
However, we use (3.12) computationally even when the conditions
of Problem 1 or 2 are not satisfied, e.g., when there are turning
points.

The solution of the collocation equations (2.18-20) with the
tension parameters specified by (3.12) will give the exact solution

of (1.1,2), for any choice of ti e[(0,1/2), whenever f(x) is a linear

0 and

polynomial and either 1) p(x) P and g(x) 2 0 or 2) p(x)
g(x) = g < 0. This is because the solutions of these problems
are elements of the approximating space E(AN,l,l,g).

We close this section by applying the method of collocation

with splines under tension to the example

12




(3.14)

(3.15a)

(3.15b)

(3.16)

(3.17)

(3.18)

3.1%a,b)

(3.19¢)

with p(x) > 0 on [a,b].

L
Ly = ey + pi{x)y = £f(x), a<x <b, y(a) = A, y(b) = B,
Using (3.5,6) the solution of this problem
is

X
y(x,e) = YR(x) + [A - Yp(a)] exp {-/(p(2)/e)dz}
a

where

Y (x) =B - P(£(2) /p(z))dz .
X

For the present, we choose ti = 0 and then use (2.10-12) and (2.19)

in (2.18) to obtain the discrete system

(ep./h.) (ZSE -Lla ) wlo./2) + Lva. coth p./2| + p(x. )d. . =
Pi/Ry h; 2Hd4 Pi 2% Pi PiX;_1%i1
(ep./h.) (ZSE -1 ) w (p./2) - Ivd. coth p./2| + p(x.)d, = £(x.)
Pi/04 R, 2H94 Pi 2794 Pi pix;id; il
i=1,2,...,N
c0 = A , cN = B
where
V( )i = ( )i - ( )i_l 7 u( )i = ( )i + ( )i_l ’

and w(z) is defined by (2.12). Using (3.13a) we select G hip(xi_l)/e

and assume that the partition has been chosen so that Py >> 1,
i=1,2,...,N. In fact, suppose that o5 is large enough tc
approximate w(pi/Z) and coth pi/z by (l-2/pi) and 1, respectively.
Then (3.16) become

(s/hi)(zvci/hi - Udi) + p(xi_l)vci/hi = f(xi_l) ’

(up(xi))di = uf(xi) , i=1,2,...,N, €y = A, cy = B

Thus, the solution is approxiamtely determined as the solution of

Sy =B, plx;_4)ve;/h, = £(x, ;) + 0(e/hy) , i =N, N-1,...,2,

(Up(xi))di = Uf(xi) ’ i = N'N-l'o..,l,

13
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}1.194, e) cy=A, dy= -(p(a)/e) [c0 - c1+h1f(a)/p(a) + O(E/hl)].

Equations (3.19a,b,c) can be recognized as 0(h) (where h is the
maximum subinterval length) "upwind" difference approximations to
the reduced problem, while (3.19e) gives the initial slope of the
solution in the boundary layer correct to 0(h/e).

4. Selection of Collocation Points

Our aim in this section is to suggest some special choices
of collocation points that may be used to reduce the errors in methods
for Problems 1 and 2. We confine our attention to the two limiting
cases of zero tension (pi = 0) and large tension (pi >> 1) for
i=1,2,...,N. For simplicity, we consider uniform partitions
with h = hi’ i=1,2,...,N, and assume that hp(x)/¢ >> 1 for
Problem 1 and h/-q(x)/€ >> 1 for Problem 2. No detailed rigorous
error analysis will be given; however, some formal error estimates
are obtained on subintervals not containing boundary layers.

4.1. Error Formulas

It is well known (cf. [8], [23], or [24]) that the pointwise

error in collocation methods for (1.1,2) satisfies an equation of

the form
(4.1) Mg 2 y® ey - gy = /P —’% G(x,E)r(5)dE , k = 0,1
a 9x
where the residual
(4.2) r(g) = Ly(§) - Ly, (§) = £(8) - Ly, (§) .

It is convenient to introduce the local transformation

(4.3) g=x;_,+hs , 0<s<1

on the subinterval I; and, as in Section 2, let f,(s) = £(x;_q+hs),

etc. Then (4.1) becomes
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k -

(k N1
(4. 4a) e )(x) =h) f —% G(xex;_,+hs) r,(s)ds, k = 0,1,
i=1 0 ox
where
(4.4b) ri(s) = f.(s) - Liyhi(s) ’
o A A Ary A A
(4.5a) Liyi(s) = (e/h )y (s) + LRiyi(S) ’
and LR is the reduced operator
i
(4.5b) LR yi(s) = (pi(s)/h)yi(s) + qi(s)yi(S) . {

i
Let Pfi(s) be the linear interpolant
(4.6) Pfi(s) = [(1—ti-s)fi(ti) + (s-ti)fi(l-ti)]/(l—Zti)

to £, (s) at the two collocation points s = t and 1 - ti on Ii'

Since the collocation equations (2.4,17) imply L yh = fi at s = ti’
1-¢t, ir e have PL yh = Pf and (4.4a) may be wrltten as
(k) N 1 ak ~ ]
(4.7) eV (x) = 2 s —G(x,x. +hs) (1-P)r.(s)ds , k = 0,1 . '
&1 0 k i-1 i

The interpolation error

(4.8) (l-P);i(s) = (s-ti)(s-l-ti);i[ti, 1-t,, sl ,

where ri[so,sl,...,sk] denotes the k th divided difference of ri

at the points so,sl,...,sk. This form of (l-P)ri(s) suffices when

pi 2 0; however, when pi >> 1 a more detailed form is needed. 1In

this case, we assume that Py is large enough to neglect terms of
-0./2

O(e i ) relative to unity and use the large tension approximations

(2.16) and (2.7-9) in (4.5) to get

(4 9) A A Oi [ -pis A ( ) -Oi(l-s) A ( ~ ~ )

. L = — [e . u,(s) - V. (s)]+L_ Y s) ,
] iyhi oi-2 Bl i € YiVi ) R, hi(

f where

(4.10) By = Vey/h = d; 4 - (Va4)/py 4 ¥y = Vey/h = d; + (94,) /oy
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;
(4.11) ui(s) = epi/h - pi(s) + qi(s)h/oi, vi(s) = epi/h + pi(s) + qi(s)h/pi 3
and Qh.(s) is the linear polynomial part of yh_(s); thus,
i

1
~ PN P. ~
—— l -
(4.12) LRiYhi(S) = pi_2 [Pi(S)(Vci/h Udi/pi)

+ qi(S)[(ci"l + di_lh/pi) (l-S‘l/Di) + (ci - dih/pi) (S'l/pi)] .

The choice of Py given by (3.12) makes ui(s) = 0(h) when pi(s) >0

A ~ ~ A = 2
on I., vi(s) = 0(h) when pi(s) < 0on I, and ui(s) = vi(s) = 0(h /oi)
when pi(s) = 0 on Ii .

Using(4.9) and (4.4b), we have
(4'13) (l_P)ri(s) = (s-ti)(s-l+ti){fi[till’tils] - LRiYhi[till-tils]}
pi ~ ~
- =3 {B;u;(s)g(s,t;) - ¥,v.(s)g(l-s,t;)

Pi

-p.t. =p.(l=t.)
e +i_ 71 i

1-2¢,
i

~ ~ |
+ (s-ti)(s-1+ti) (Biui[l-ti,s]+Yivi[l-ti,s]) 53

-Diti -~ -pi(l-ti) A~ P
Biui[ti,l-bi,s]+e Yivi[ti,l-ti,su},

-(s-ti)(s-l+ti)(e

where
-p;s -piti -pi(l-ti) 3
(4.14) g(S,ti) = [(l-2ti)e + (s-l+ti)e - (s-t;)e ]/(I—Zti) .

-0./2
The assumption that terms of 0Of(e 1) are negligible will specifically

allow us to drop all terms in (4.13,14) involving the factor

-p. (1-t.)
e 1T 1 since ti < 1/2. This will be done in all further uses

of (4.13,14) except where noted.

It remains to use the formulas (4.8) or (4.13) for (l—P);i(s)
together with the approximations (3.8) or (3.1l1l) for the Green's
functions in (4.7) and find appropriate choices for collocation
points. One problem is that the errors given by (4.7) depend on

the unknown numerical solution Yhe This would not be a serious

16




(4.15a)

(4.15b)

(4.15¢)

(4.154)

difficulty if Yn and y; were bounded as € + 0 for fixed h. We have
shown by example in Section 3 that cy and di (hence, Yy and y;)

are bounded away from the boundary layer region for e€/h << 1 when

ti = 0 and Py is selected according to (3.12). It is reasonable

to assume that this remains so when ti is sufficiently small; however,
it is also relatively easy to show that di can be unbounded at

every knot point as e€/h + 0 when p; = 0 and ti are the Gauss-
Legendre points. Little is known about the behavior of the numerical
solution for other choices of ti and Py+ In this paper, we shall

not attempt to find conditions for Yn to be bounded as ¢ + 0, but
rather we shall make some suggestions for collocation points that

should generally reduce the error in methods for Problems 1 and 2.

J
We note in passing that if Yh and Yy, were bounded, arguments similar

to those used by Pruess [21] or Russell and Christiansen [24] on
related non singularly-perturbed problems could be used to remove
the dependence on Yh from the leading order terms in e(x).

4.2. Collocation Points for Problem 1

We again consider the case when p(x) > p > 0 for xe [a,b].
Let x be a knot point, say xj, so that there are no discontinuities
in derivatives of the Green's function on any subinterval and apply

the transformation (4.3) to (3.5b) and (3.8c) to get

Mix;_, + hs,xj) = H(xi,xj)ni(s) = Gijﬂi(s) r 1 <3
Y*(Xj,xi_l + hs) = Y*(xj'xi—l)ei(s) ’ i> ]
where
m,(s) = exp {-hsl(p (2)/¢ - q (2)/p,(2)]az ,
s
S5(8) = exp (/°0(q;(2) = by (2)) /B (2)14z
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The last form of (4.15a) follows from our assumption that cerms of
O(e-pi/z) are negligible, hence, the boundary layer in H(xi,xj)
at X5 is well within subinterval Ij‘

Using (3.8a) and (4.15) in (4.7) we have

- ~ N <
e(xj) = h[Y*(a,b)Gjo - Y*(xj,b)]sN - tho jZ%.Y*(a’xi-l)Ri

N -
4.16a + ha(x.)S. + h Y*(x.,X. )R, -
( ) ( J J i=]z+l (le l"l i 14
] ~ * ' -~
= - * -
e (xj) hiy (a,b)[pj/h o (xj)/a(xj)léjo + Y;(xj,b) Sy
* ] N ~
- *
*holpy/h = a (x5)/a(x)164, 12=:1 Y*(a,x; ;)R
h * [ % ~ A
(4.16Db) - a(xj)[pj/h - a (xj)/a(xj)]sj + h 15 Yx(xj,xi_l)Ri
-
where
* ~
t.17,18) pj = h[P(xj)/E - q(xj)/P(Xj)]: Y*(lexi) = a(xj)Y*(xj’xi) ’
and
i.19a,b) S, = fln.(s)(l-P)r.(s)ds , R. = flc.(s)(l-P)r.(s)ds .
i o i i g * i
*
We call pj the adjoint tension parameter and note that p; = pj+l

when the tension parameters are selected according to (3.13a).

Observe that D; is large whenever hp(x)/e is large and this can
induce large errors in e'(xj) (cf. (4.16b)). These large errors

can be confined to the boundary layer near x = a if Sj is sufficiently
small, However, in order for e'(xj) to be small within the boundary
layer Ri' i=12,...,N, must also be sufficiently small. 1In this
paper, we have concentrated on producing good approximations outside
of boundary laver subintervals.

We first consider the taut spline approximation where (l-P)ri(s)

is given by (4.13,14). Expanding £(x), p(x), and g(x) in Taylor's

18




series about a suitable point on Ii would reveal that fi[ti,l~ti,s]
~ 2 . ~ A

and ui[ti,l-ti,s] are 0(h”) while ui[l-ti,s] and vill-ti,s] are

0(h). As previously noted, the choice of pi given by (3.13a) makes :

ui(s) of 0(h) and

(4.20) vi(s) = pi(O) + pi(s) + O(h/pi) .

If we further assume that Cyr di/pi, and Vci/h are bounded then

-~ ~

Ly ¥, [t;,1-t.,s] is 0(h?), and to leading order (4.13,14) become
ihy -

(4.21) (l-P)ri(s) ~ Yivi(s)q(l-s,ti) .
This is not surprising since this term is due to the presence of
-p,; (1-s)
the e * functions in the taut spline approximation and these

functions are not present in the exact solution of Problem 1.

Substituting (4.21) into (4.19) gives

.22a,b) S; ~ \ g ni(s)g(l-S,ti)vi(s)ds r Ry SV g Ci(s)g(l—s,ti)vi(s)ds .

Si may be further approximated by using Laplace's method (cf. Bender

and Orszag [3, Chap. 6]). The essential idea is that ni(s) is
exponentially small outside of a small neighborhood of s = 1 when
hpi(s)/s is large; hence, the integrand in (4.15c) may be replaced

by its value at s = 1. ,Using (4.17) this gives

(4. 23) Si ~ Yy é e g(l—s,ti)vi(s)ds.

Now, we see that S% may be reduced in magnitude by selecting ti
-p¥*(1l-s
such that e * is orthogonal to g(l-s,ti), i.e., using (4.14)

we require, *
=-p; (1-s) l1-t.-1/0. -p.t
1 i 1 1 i i
(4. 24) [7e g(l-s,t,)ds = —/ [ = - =
0 i o;!'_ l+pi/pi 1 Zti

If terms of O(l/p;) are neglected, this implies

* .
J (4. 25) ti = (l/pi) in (l+pi/pi) r 1 =1,2,...,

19




We refer to this choice of ti as Method 1. It can only be used

* *
when pi and pi are such that ti < 1/2. When pi and °i are large

ti = 0(l/pi) and collocation is performed near the ends of each
é subinterval. Using (4.14), (4.20), and (4.25) in (4.22b) implies
-p.t.
ivi

(4. 26) R; = Yici(l)vi(l)e ~ Yipi(l)ci(l) .

If both cs and di were bounded outside of the boundary layer,
then Yi would be O0(h) (cf. (4.10)). Thus, from (4.16) the best
that we could expect from Method 1 is for e(xj) and e'(xj) to be
0(h). The computational evidence in Section 5 indicates that
this is the case.

A second possibility is to select ti so that Ri given by
(4.22b) is reduced in magnitude. This can be done by requiring

rlg(1-s,t.)ds = o.
0 1

Using (4.14) this leads to
_ -1 ,2 .. P
(4.27) t, =% [1 - =— cosh (— sinh —=)] ,
i Py 2

and we refer to this choice of ti as Method 2. We retained the

-p.(1-t.)
O(e * i

) term in (4.14) when obtaining (4.27) in order that
ti approach the Gauss-Legendre point (cf.(4.33)) as Py 0. When

Py is large ti < (l/pi) in (pi/2) and in this case (3.12), (4.18),

and (4.23) imply that

A *
(4.28) S; ~ v;p; (L) /ey

|
E
E
{
|

The computational evidence in Section 5 indicates that Si is not
small enough to insure an accurate approximation of e'(xj) at any
knot point. 1In fact, the indications are that e(xj) h O(hz) while
e'(xj) > 0(h%/¢) when o, is large. Method 2 may still be used in

this case if one is not interested in predicting the slope of the

20
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solution as long as Py is not so large that it causes the discrete
system (2.18=-20) to be ill-conditioned. When Py is small ti
approaches the Gauss-Legendre point and e(xj) and e'(xj) will
approach 0(h4) (cf. deBoor and Swartz [8]).

For polynomial approximations, we use (4.8) in (4.19) to
get *
-p,. (1-5)

h i -
(4.29a) Si g e (s ti)(s—1+ti)ri[ti,l ti,s]ds '

e

(4.29b) R

lA ~
i é ci(s)(s-ti)(s-l+ti)ri[ti,l-ti,s]ds '

where, once again, Laplace's method was used to approximate the
singular integral S i

Either S or R, max(be reduced in magnitude by selecting t
such that either e or 1 is orthogonal to (s-ti)(s-l+ti),
respectively, i.e., by requiring either

1 -pI(l-s) 1

1.30a,b) g e (s-ti)(s-1+ti)ds =0 or é (s-ti)(s—l+ti)ds =0 .
The option (4.30a) gives

*
w(pi/2)
(4.31) t, = —x
1 Pi l+/1-4w(oI/7)/p§

where w(z) was defined in (2.12). This method is referred to as
Method 3. Once again, ti approaches the Gauss-Legendre pcint as
Py * 0 and ti It l/p; when o; is large. Assuming that Yh a

y; are bounded outside of the boundary layer region and using
(4.4b) and Taylor's series expansions of f(x) and Lyh(x) about
X4 in (4.29b) leads to

2 A
~ _ h _ te
(4.32) Ri ~ i3 ;i(l)[f(xi) Lyh(xi)] .
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L}
This in turn via (4.16) would imply that e(xj) and e (xj) are
O(hz) at knot points outside of the boundary layer. However, it
L]

I
is typically possible to replace (Lyh(xj)) ' by (Ly(xj)) + 0(h)

(cf. Pruess [21] or Russell and Christiansen [24]). If this were

so, this Ri’ e(xj), and e'(xj) would all be 0(h3) at knots away
from the boundary layer. This is in accord with the computational
results of Section 5.

The final possibility is to select ti so that (4.30b) is zero
and this gives ti as the Gauss-Legendre point on the interval
(0,11, i.e.,

(4.33) £y = (»1 - 1//3)Y/2 .

This choice of ti is known to give poor results when hp(x)/e >> 1;
however, in Section 5, we show that it may be used outside of sub-
intervals containing boundary layers prcvided that Yh and y; are
computed accurately enough at the ends of subintervals containing
boundary layers.

4.3. Collocation Points for Problem 2

Again, let x be a knot point, say xj, and use (3.9) and (4.3)

to write
(4.34a) H(xi_l+hs,xj) = H(xi,xj)wi(s) = Gijﬂ(s) 1< 3
(4.34Db) H(xj,xi+hs) = H(xjpxi)Xi(S) = 6ijli(s) r 1 >3,

where now
A ~

1l S
. N = - - . . = - -3.
4. 34c,d) wl(s) exp { hé v Ql(s)/eds}, Al+l(s) exp { hé v Ql+l(s)/s ds .

The last forms of (4.34) again follow from our assumption that

terms of 0O(e ) are negligible. Using (3.11l) and (4.34) in

(4.7) we have
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-~

. _ _h = _ -
'4.35a) elxg) =3 (8,5 8; + ys Sy = 85 =55,

-~

- ] _ h _ * [} * _ ]
(4.35b) e (xj) =3 { (po/h + qo/qo) 50j S; + (pyh qN/qN) GNj Sy

* ' * ] -~
+ (pj/h + qj/qj) Sj - (oj/h - qj/qj) Sj+1] '

ﬁ where
f .36a,b) q = q(xj) ' p; = hV—q(xj)7e '
and
(4.37 1 2 q e 1 7 4
-37a) Sj = é wj(s)(e q(xj)qj(s)] ( -P)rj(S) s
~ 1/\ 2 A -1/4 ~
(4.37b) Sj+l = g Xj+l(s)[e q(xj)qj(S)] (l-P)rj+l(s)ds .

Thus, in this problem, there are no regular integrals to consider.

It suffices to find collocation points for Sj since analogous
results for ;j+l will follow by replacing s by l-s and making the
appropriate sign changes in (4.37b). Thus, using lLaplace's method
we approximate (4.37a) by

.1 TPi-s) ~ -1/4 .
(4.38) Sj z é e [e q(xj)qj(S)] (l-P)rj(s)ds .

For taut spline approximations, the choice of pj given by
(3.13b) reduces both Gj(s> and Gj(s) (cf. (4.11)) to O(hz/oj)
and it is still reasonable to select tj according to (4.25), i.e.,
so that (4.24) is satisfied with oj and p; given by (3.13b) and
(4.36b), respectively. We continue to refer to this choice of
tj as Method 1. Likewise, for polynomial approximations, we select
tj according to (4.31), i.e., so that (4.30a) is satisfied, and
till refer to this as Method 3. Both methods reduce Sj (hence,

*
Sj+l) to at least O(htj). Since tj is O(l/oj) or 0(l/cj) for

*
Method 1 or 3, respectively, and h/oj and h/_oj are both 0(ve)
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(cf. (3.13b) and (4.36b)), we would expect (cf. (4.35a)) e(xj)
to be at most 0(h/€) at knots away from boundary layers. The
computational results of Section 5 support this conclusion.

5. Numerical Results

In this section, we apply Methods 1, 2, and 3 of Section 4
to three examples having known exact solutions. Our calculations
are performed on a uniform partition with spacing h and the adjoint
*

tension parameters pj are approximated as

. lpixy) /e = alx)/px) |, Tupxs) /el > Jua(xy) |
(5.1a) Py = h

Hq(X;)72¢ lup(x;) /el < lua(xy) |

j=1,2,...,N,
where

j -1 if up(xj)/e <0
(5.1b) k

j if up(x;)/e > 0

The tension parameters pj and collocation points tj on Ij are chosen
as follows:
Method 1: Select pj according to (3.12) and

(5.2a) tj = min {(l/pj) 1n (1+pj/p;) , (1=-1/V/3)/2}

Method 2: Select pj according to (3.12) and

- P
(5. 2b) t. = £ [1 - 2 cosh™! (2= sinh =3)]
j 2 P P. 2
j j
Method 3: Select p. = 0 and
: ) I wipx/2)
(5.2c) £, = J
i 0

I 1+ T=Tu (63721783

We also consider "partial tension" methods where the above

rules for selecting pj and tj are only applied on subintervals

containing boundary layers and collocation is performed at the
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Gauss—-Legendre point with oj = 0 on all other subintervals. These
methods can potentially converge as 0(h4) outside of boundary

layer subintervals provided that the numerical solution and its
derivative have been computed accurately enough at the ends of
subintervals containing boundary layers. Thus, we would not expect
partial tension to be useful with Method 2 since there can be large

errors in the derivative of the computed solution at the knots.

We denote the partial tension methods that use either Method 1
or 3 within boundary layer subintervals as either Method 1P or
3P, respectively. 1In order to automatically locate subintervals

containing boundary layers we first compute a preliminary solution, ;
cjo, djo, j=0,1,...,N using either Method 1 or 3 on all subintervals.
Using this solution we calculate

=" 0 0 .
5~ . = f P M . s = . . ’ =1, g oe gl -
(5.3) Yy [uf (x5) =P (x3)d SIENERS /2¢ j=1,2 N

and set pj = 0 and tj = (1-1/V3)/2 on any subinterval having

(5.4) Yy < § min {1,3?i 'Y, ,...,?N } o,

where § is a threshold constant which we normally take as 50. The
problem is then re-solved using the new values of Qj and tj. This
procedure is somewhat ad hoc and has not been totally effective,

e- ecially when h is relatively large and cj0 and djo are inaccurate.

it
This can cause errors in yj which can lead to the erroneous

conclusion that a subinterval contains a boundary laver when in fact

it does not, and vice versa.

Each example was solved for various values of ¢ and h = (b-a)/N

with N = Zk, k=2,3,...,7. The error in the solution and its

derivative on a partition with spacing h are measured by
(1) = (i) (1) S
(5.5) lle IIh,A = max Iy (XJ) - Yh (x])| i=020,1

0 xjeA0
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where AO is a fixed uniform partition that is specified with each
example. The order of convergence rs is computed as
_ (1) (1) i =
(5.6) r; =1n {|]e IIh’A0/||e Ilh/z,ao} /Jin2 , i=0,1.

All calculations were performed in double precision on an

15

IBM 3033 computer. Errors that are less than 5 x 10° are recorded

as zero in the tables.

Example 1l:

ey + ((l+x)y) = e X/2

[(L+x) (3=-x)+/2]/2 , 0 < x <1,
(5.7)
-1/2 _ _-1/3¢

y (0) o . y(l) = e

The exact solution of this problem is
y(x) = exp (-x/2) - exp [-x(x2+3x+3)/3e] .
There is a boundary layer of width 0(e) near x = 0.
In order to demonstrate how poorly collocation at the Gauss-~

Legendre points with cubic polynomials can behave on singularly-

perturbed problems, we solved (5.7) with € = 10_4 and h = 1/8 by

this method and plotted the computed solution in Figure 2. It

bears little resemblance to the exact solution which is essentially

e—x/2 for x > 10-3. Pointwise the numerical solution approximately

lies on the straight line joining the two boundary values y(0)
and y(1).
We solved (5.7) for € = 10", i = 2,4,6,8 using Methods 1, 2,

3, and 1P. The errors I[ellh A and |le on the partition
14
0

1,

bg = {1/8, 1/4, 3/8,..., 7/8} dre presented in Tables 1 and 2,

respectively, for ¢ = 10”2, 10”%, and 107%. (The results for

-6 8

€ = 107 ° were essentially the same as those for 10 °.) |[le]!

| A
h'uo

is also plotted as a function of 1/h in Figure 3 for Methods 1, 2,
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and 3 and € = lO-i, i=2,4,6,8. Tables 1 and 2 indicate tnat when
€e/h << 1, Methods 1, 2, and 3 are converging as 0(h), 0(h2), and

0(h3), respectively, and that |]e is converging as O(hz/e)

'

h,ag
for Method 2. For larger values of e, e.g. € = 10-2, the order
of convergence can be seen to increase as h decreases (e/h increases)
and the collocation points move closer to the Gauss-Legendre points.
Partial! tension with Method 1P yields a dramatic improvement in
the results obtained by Method 1.

In order to provide some indication of how Methods 1, 2, and

3 behave on subintervals containing boundary layers and between
knot points, we have plotted their computed solutions yh(x) on
0 < x < 2h (Figure 4) and their errors e(x) and e'(x) on 0 <x<1

4

(Figures 5,6,7) for ¢ = 10°° and h = 1/8. The error in the Method 2

solution shown in Figure 4 is less than 3.2 x 103

for all x ¢ IfJIz.
Method 1 yields poor accuracy for stl, but it does predict the
correct width of the boundary layer. Method 3 dissipates the boundary
layer; however, the dissipation is largely confined the subinterval
Il containing the boundary layer. Figures 5-7 show that all three
methods have spurious internal boundary layer jumps in y;(x) at

the ends of each subinterval and that Method 2, because of the
singular behavior of y; in € at the knots, has spurious jumps in
yh(x) itself., The jumps in yh(x) are small and one is not normally
interested in the solution at points other than the knot points;
however, the results indicate that some caution is needed wheﬁ

using (2.7-12) to interpolate the solution between knot points.

Figures 5-7 further indicate that the pointwise error is

largest at X, = h and decreases at knots that are farther from
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the boundary layer. This is generally true for other values of h

as well and, thus, we have tabulated |e(h)| for Methods 1, 2, and

3 with e = 1073, i = 2,4,6,8 and N = 2%, i = 2,3,...,7, in Table 3.
The results for Methods 2 and 3 indicate that |e(h)| cannot be

reduced below 0(eg) until e/h2 and e/h3, respectively, are sufficiently

small.

Example 2:

e
ezy - (x2+s)y = -(x2+e)(l+sin Tx) - Ezﬂz sin mx, 0 < x < 1 ,

(5.8)
y{(0) = y(1) = 0 .

The exact solution of this example is
1 -1/2¢ -x2/2¢
y(x) =1 + sin 1™ « ———— {(1l-e YW(x/V/e)e
erf (/1/¢)
2
+ (1-e" Y2y (/7 e (1TXT) /28y

where

z2
wi{z) = e erfc(z) .

(Note that y' is multiplied by €2 instead of ¢ for notational
simplicity.) The exact solution of (S.8) has a boundary layer
of width 0(Y/e) near x = 0 and one of width 0(e) near x = 1. This
problem does not satisfy the assumptions of Problem 2 since
g(x) = -(x2+e) cannot be bounded away from zero at x = 0 as ¢ +'0;
1 thus, x = 0 is a turning point.

We computed solutions by Methods 1 and 3 for e = 10~ %, i=2,4,6,8.
Solutions were also calculated using the collocatiqn points of
Method 3 (cf. (5.2c¢)) but with splines under tension instead of

polynomial splines, and these are denoted as Method 3T. The errors

L .
llel[h . and [ e [lh p_ are presented in Tables 4 and 5, respectively,
’ 0 14 0

for the partition A, = {18, 174, 3/8,...,7/8}. Partial Tension
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solutions using Methods 1 and 3T were also calculated and the

results were marginally more accurate than those of Method 1.

Tables 4 and 5 indicate that when e/h << l,|]e||h A and
’
0
L
[le llh,Ao are 0(eh) and O(hz), respectively, for Method 1 and

0(eh3) and O(hz), respectively, for Method 3T. The small errors
in Method 3 make it difficult to estimate the order of convergence.
The largest error on the partition A = {0,h,2h,...,Nh = 1}
used for the computation was once again at the end of a subinterval
containing a boundary layer, i.e., either at Xy = h or Xy-1 = (N-1)h.
To indicate how this error behaves, we present results for Ilellh,A
in Table 6. For small values of e/h we see that the polynomial
solution (Method 3) is not converging in h and that this situation
is remedied by using taut splines (Method 3T). Although we have
not done so, we suspect that it would have been sufficient to
use taut splines only within subintervals containing boundary
layers. Furthermore, Methods 1 and 3 do not appear to be uniformly
convergent in h for all €. All methods are converging as 0(g)
which accounts for the remarkable accuracy when & is small.
Example 3: (cf. Hemker [15])

" ] 2 .
ey + Xy = - ¢ cos mXx - mx sinm™x , -l < x <1,

(5.9)
y(-«1) = -2 , y(1l) =0 .

The exact solution of this example is

y(x) = cos mx + erf (x/v2e)/erf (1//2¢) .
The problem has a turning point at x = 0 and the exact solution
features an interior or "shock" layer there.

Solutions were calculated by Methods 1, 2, 3, and 1P for

-1 '
e = 10°%, i=2,4,6,8. The errors Ile]lh p and [le llh A ©on the
=0 70
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partition 4, = {-3/4, -1/2, -1/4, 1/4, 1/2, 3/4} are presented
in Tables 7 and 8, respectively for ¢ = 1072, 1074, and 1078,
{The results for e= 10-6 were essentially the same as those for

e = 107%.) The results for ||e]|h o are indicating the same
r=0

-

orders of convergence as found in Example 1l; however, for Methods 1

L}
and 3, |[]e [(h o 1s much more accurate than the corresponding
1’
0

values for example 1.

In order to include the behavior of the solution in the turn-
ing point region, we have tabulated llellh,A on the partition
A = {-1,-1+h,...,~14+Nh=1} used for the calculation in Table 9.

Note that llellh’A = IIeIIh,A for Method 1, so the maximum error
0

is not in the turning point region. Methods 2 and 3 are both

exhibiting regions of non-uniform convergence in h.

6. Discussion and Conclusions

Based on the results of Sections 4 and 5, we conclude that
splines under tension are most suitable in regions containing
boundary and/or interior layers and that collocation with piecewise
polynomials are superior elsewhere. In particular, when e/h << 1
Method 3 provides an approximation that converges outside of boundary
layer subintervals as 0(h>) when p(x) # O and at least 0(vEh)

when p(x) Z 0 on [a,b]. Hemker [15] and de Groen and Hemker [10]

reached similar conclusions with their exponentially fitted Galerkin

methods.

Partial tension can converge as 0(h4) outside of boundary
layer subintervals, but either requires a knowledge of boundary
layer locations or a preliminary solution to automatically locate

' them. The latter procedure may be useful for nonlinear problems

F 30
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where it is necessary to solve a sequence of linear problems to
find the solution; however, for linear problems it does not seem
to warrant the extra computational effort merely to obtain one
order of accuracy more than that available by Method 3.

The use of "one sided splines under tension,"” i.e., the
selection of basis functions that satisfy

L} ]
(6.1) (n + on) =0 , 0<s<11,

s e 4 s mn e =

instead of (2.14) would undoubtably improve the results on sub-
intervals where p(x) # 0. A basis for these approximations would
contain either the exponential exp(-ps) when p > 0 or exp(-|p|(l-s))
when p < 0, and not both as in the current case. This would more
accurately represent the exact solution of problems where p(x) # 0
on (a,bl. The results could possibly be further improved by not
restricting the collocation points to be placed symmetrically

on each subinterval and by using non-uniform partitions. Each

of these potential improvements is currently under investigation.
Extensions of our methods to higher order scalar and vector systems
of two-point boundary value problems as well as second order
parabolic partial differential equations are also being studied.
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I
|§ METHOD N e = 1072 10”4 1078
; Wellh’ao r, Hellh,Ao r, HeTfh'Ao I,
1 4 3.87E-2 4.63E-2 4.37E-2
8 1.95E-2 1.0 2.44E-2 0.8 2.44E-2 0.8
16 7.06E-3 1.5 1.09E-2 1.2 1.09E-2 1.2
32 2.02E-3 1.8 5.15E-3 1.1 5.15E-3 1.1
64 2.50E-4 3.0 2.49E-3 1.0 2.53E-3 1.0
128 5.69E-6 5.5 1.21E-3 1.0 1.25E-3 1.0
2 4 2.34E-2 2.09E-3 1.28E-3
8 1.28E-2 0.9 1.13E-3 0.9 4.40E-4 1.5
16 1.07e-4 6.9 9.59E-5 3.6 1.07E-4 2.0
32 3.34E-5 1.7 2.14E-5 2.2 2.63E-5 2.0
64 4.83E-6 2.8 4,.41E-6 2.3 6.50E-6 2.0
128 4.37E=-7 3.5 7.39E-7 2.6 1.62E-6 2.0
3 4 4.37E-3 3.57E-5 1.34E-5
8 3.70E-3 0.2 5.56E-5 -0.6 1.77E-6 2.9
16 5.79E-7 12.6 2.76E-7 7.7 1.99E-7 3.2
32 5.92E-8 3.3 3.37E-8 3.0 3.38E-8 2.6
64 1.93E-9 4.9 4.19E-9 3.0 4,23E-9 3.0
128 6.43E-11 4.9 5.19E-10 3.0 5.37E-10 3.0
1P 4 2.67E-6 3.69E-7 1.10E-2
8 1.06E-6 1.3 3.38E-8 3.4 3.29E-8 18.4
16 4.64E-6 -2.1 1.86E-9 4.2 2.05E-9 4.0
32 2.12E-6 1.1 2.64E-11 6.1 1.33E-10 6.0
64 9.11E-8 4.5 5.89E-11 -1.2 8.68E-12 3.9
128 4.68E-9 4.3 1.78E-11 1.7 6.24E-13 3.8
Table 1: Error and Order of Convergence for Example 1 Measured on

AO = {1/8, 1/4, 3/8,..., 7/8}.




METHOD N e = 1077 10”4 107°
T Thag | 1 | T8 oy | 7, | ° Thag | 71 ..
1 4 6.38E-2 6.97E-2 6.99E-2 j
8 3. 54E-2 0.8 4.34E-2 0.7 4.35E-2 0.7 |
16 1.22E-2 0.3 1.93E-2 1.2 1.94E-2 1.2
32 3.14E-3 2.0 9.15E-3 1.1 9.22E-3 1.1 !
64 1.15E-4 4.8 4.43E-3 1.0 4.50E-3 1.0
128 8.09E-5 0.5 2.15E-3 1.0 2.22E-3 1.0
2 4 4.14E 0 1.01E-2 1.01E 6
8 1.75E 0 1.2 2.43E-1 2.1 2.45E 5 2.0 1
16 3.84E-2 2.2 5.58E 0 2.1 6.02E 4 2.0
32 6.64E-3 2.5 1.37E 0 2.0 1.49E 4 2.0
64 | 8.24E-4 3.0 | 3.38E-1 2.0 | 3.72E 3 2.0
128 7.10E-5 3.5 8.24E-2 2.0 9.27E 2 2.0
3 4 3.05E-3 5.68E-5 2.14E-5
8 1.99E-2 -2.7 9.62E-5 -0.8 3.14E-6 2.8
16 8.65E-5 7.8 4.90E-7 7.6 3.18E-7 3.3
32 1.92E-5 5.2 6.00E-8 3.0 6.01E-8 2.4
64 1.37E-6 3.8 7.44E-9 3.0 7.53E-9 3.0
128 9.56E-8 3.8 9.23E-10 3.0 9.54E-10 3.
1p 4 9.18E-4 6.08E-5 1.76E-2
8 1.41E-4 2.7 2.41E-5 1.3 2.19E-5 9.7
16 5.86E-4 1.3 6.46E-6 1.9 5.48E-6 2.0
32 2.68E-4 1.1 7.33E-7 3.1 1.52E-6 1.
64 1.15E-5 4.5 8.11E-7 -0.1 4.25E-7 1.
128 5.93E-7 4.3 2.18E-7 1.9 1.46E-7 1.
Table 2: Error and Order of Convergence in the Derivative of the

Solution of Example 1 Measured on Ao = {1/8, 1/4, 3/8,...,7




METHOD | N e = 1077 1074 1076 1078
» “fe(h) | r le(h) | r fe(h) | r te(h)! r
1 4 3.87E-2 4.36E-2 4.37E-2 4,37E-2
8 1.95£=-2 1.0 2.44E-2 0.8 2.45E-2 0.8 2.44E-2 0.8
16 7.89E-3 1.3 1.28E-2 0.9 1.29g-2 0.9 1.29E-2 0.9
32 2.25E-3 1.8 6.57E-3 1.0 6.62E-3 1.0 6.62E-3 1.0
64 3.08E-4 2.9 3.30E-3 1.0 3.35E-3 1.0 3.35E-3 1.0
128 6.23E-6 5.6 1.63E-3 1.0 1.69E-3 1.0 1.69E-3 1.0
2 4 2.34E-2 2.09E-3 1.30E-3 1.28E-3
8 1.28E-2 0.9 1.13E-3 0.9 4.52E-4 1.5 4.40E-4 1.5
16 4.19E-3 1.6 7.15E-4 0.7 1.36E-4 1.3 1.26E-4 1.8 i
32 2.47E-4 4.1 5.39E-4 0.4 4.32E~-5 1.7 3.35E-5 1.9 %
64 4.45E-5 2.5 4.36E-4 0.3 1.76E-5 1.3 8.72E-6 1.9 ?
128 5.48E-6 3.0 3.51E-4 0.3 1.05E-5 0.7 2.31E-6 1.5
3 4 4.37E-3 3.57E-5 1.28E-5 1.34E-5
8 3.70E-3 0.2 5.56E~-5 -0.6 1.62E-6 3.0 1.77E-6 2.9
16 1.38E-3 1.4 6.17E-5 -0.2 3.35E-7 2.3 3.04E-7 2.5
32 7.65E-4 0.9 6.34E-5 -0.0 8.50E~7 -1.3 2.99E-8 1.1
64 8.48E-5 3.2 6.29E-5 0.0 7.13E-7 0.3 2.99-8 10.0
128 4.39E-6 4.3 6.05E-5 0.1 6.79E-7 0.1 3.61E-7 E—S.G
Table 3: Error at the Knot Point x, for Example 1.

1




METHOD | N e = 10 10”4 1075 1078
ITelly A | T ITeTFg,AO r, lellh,AO £, Hellh’Ao r
1 4 7.35E-3 1.54E-4 1.57E~6 1.57E-8
8 3.83E-3 0.9 8.75E-5 0.8 9.19E-7 0.8 9.21E-9 0.8
16 3.99E-4 3.3 3.05E-5 1.5 3.24E-7 1.5 3.24E-9 1.5
32 4.67E-5 3.1 1.30E-5 1.8 1.49E-7 1.1 1.49E-9 1.1
64 3.20E-6 3.9 5.84E-6 1.2 7.28E-8 1.0 7.30E-10 1.0
128 2.05E-7 4.0 2.50E-6 1.2 3.61E-8 1.0 3.63E-10 1.0
3 4 3.13E-2 4.66E~4 4.67E~6 4.67E-8
8 2.93E-2 0.1 5.92E-4 -0.3 5.95E~-6 -0.3 5.96E-8 -0.4
16 3.42E-4 6.4 9.92E-7 9.2 1.02E-10 | 15.8 1.04E-14| 22.5
32 4.58E-6 6.2 5.97E-10| 10.7 1.00E-13} 10.0 0.0
64 2.87E-7 4.0 1.57E-10 1.9 2.46E-14 2.0 0.0
128 1.80E~8 4.0 2.37E-11 2.7 6.00E-15 2.0 0.0
3T 4 4.93E-3 8.55E-5 8.65E~7 8.65E-9
8 1.05E-3 2.2 4.85E-5 0.8 5.06E-7 0.8 5.06E-9 0.8
16 8.70E-5 3.6 3.84E-6 3.7 3.94E-8 3.7 3.94E-10 3.7
32 5.76E-6 3.9 4.73E-7 3.0 4.88E-9 3.0 4.88E-11 3.0
64 3.66E~7 4.0 5.74E-8 3.0 6.08E-10 3.0 6.09E-11 3.0
128 2.29E-8 4.0 6.66E=9 3.1 7.60E-11 3.0 7.61E-13 3.0
Table 4: Error and Order of Convergence for Example 2 Measured on

AO = {1/8, 1/4, 3/8,...

7/8%.




METHOD | N e = 1072 1074 10”8 10”8
rle'I]h'A rl T]e'l]h'A rl llerllh'A rl Tle'IK’A rl
0 0 0 0
1 4] 1.36E-1 2.81E-1 2.79E-1 2.78E-1

8 2. 68E-2 2.3 8.65E-2 1.7 8.76E-2 1.7 8.76E-2 1.7
16 4.46E-3 2.6 2.37E-2 1.9 2.49E-2 l.8 2.49E-2 1.8
32 1.43E-4 5.0 5.88E-3 2.0 6.45E-3 1.9 6.46E-3 1.9
64 8.35E-6 4.1 1.36E-3 Z.i 1.63E-3 2.0 1.64E-3 2.0

128 5.10E-7 4.0 3.02E-4 2.2 4.07E-4 2.0 4.09E-4 2.0

3 4 2.04E O 2.97E 0 2.97E 0O 2.98E 0
8 2.37E 0 ~0.2 4.82E 0 0.7 4.85E 0 ~-0.7 4.85E 0 -0.7
16 2.87E-2 6.4 8.37E-3 9.2 3.93E-8 26.9 8.40E-7 2.5 ;
32 4.12E-5 9.4 6.34E-7 10. 4 4.09E-9 3.3 2.72E-8 4.9
64 2.13E-5 1.0 3.78E-8 4.1 4.86E-10 3.1 2.74E-8 0.0 t

128 1.34E-6 4.0 3.48E-9 3.4 9.52E-11 2.4 2.59E-8 0.1

3T 4{ 1.10E-1 2.01lE-1 2.02E-1 2.02E-1
8| 1.45E-2 2.9 | 7.31E-2 1.5 | 7.45E-2 1.4 | 7.45E-2 1.4

32 1.25E~4 2.1 4.63E-3 2.0 5.33E-3 1.9 5.33E-3 i.9

64 1.15E-5 3.4 1.07E-3 2.1 1.35E-3 2.0 1.35E-3 2.0

128 7.98E-7 3.8 2.28E-4 2.2 3.36E-4 2.0 3.39E-4 2.0

!
16 5.18E-4 4.8 1.89E-2 2.0 2.04E-2 1.9 2.04E-2 1.9 {
}
i

Table 5: Error and Order of Convergence in the Derivative of the

Solution of Example 2 Measured on by = {1/8, 1/4, 3/8,..., 7/8:.




METHOD | N e = 1072 1074 10”8 1078
ITelly, o | T fellp a | T tlelly o | T lelly o (T

1 4 7.35E-3 1.54E-4 1.57E-6 1.57E-8
8 3.83e-3 0.9 8.75E-5 0.8 9.19E-7 0.8 | 9.21E-9 0.8
16 3.99E-4 3.3 4.61E-5 0.9 4.76E-7 0.9 | 4.78E-9 0.9
32| 4.74E-5 | 3.1 | 1.358-3 |~4.9 | 2.38E-7 | 1.0 |2.41E-9 | 1.0
64 1.63E-5 1.5 2.81E-3 |~1.1 8.28E-8 1.5 | 1.21E-9 1.0
128 1.42E-6 3.5 6.32E-4 2.2 9.01E-7 |-3.4 ] 6.01E-10 1.0

3 4 3.13E-2 4.66E-4 4.67E-6 4,.67E-8
8 2.93E-2 0.1 5.92E-4 |[~0.3 5.95E-6 |-0.3 | 5.96E-8 -0.4
16 2.21E-2 0.4 9.59E~-4 |-0.7 9.70E~-6 |-0.7 | 9.70E-8 -0.7
32 7.52E-3 l.6 1.72E-3 |-0.8 1.76E-5 {-0.9 } 1.76E-7 -0.9
64 9.96E~4 2.9 3.20E-3 |-0.9 3.35E-5 |-0.9 }| 3.35E-7 -0.9
128 6.75E-5 3.9 5.988-3 [-0.9 6.55E-5 |-1.0 | 6.55E-7 ~1.0

3T 4 4.93E-3 8.55E-5 8.65E-7 8.65E-9
8 1.05E-3 2.2 4.85E-5 0.8 5.06E-7 0.8 | 5.06E-9 0.8
16 1.43E-4 2.9 2.86E-5 0.8 2.63E-7 0.9 | 2.63E~-9 0.9
32 6.88E-6 4.4 1.28E-3 |-5.5 1.32E-7 1.0 | 1.32E-9 1.0
64 2.15E-5 |-1.6 8.97E-4 0.5 9.07E-8 0.5} 6.65E~10 1.0
128 2.00E-6 3.4 3.48E-4 1.4 8.80E-7 |-3.3 ] 3.353E-10 1.0

Table 6: Error and Order of Convergence for Example 2 Measured on

s = {0,

hr 2h,--., Nh =

1}.




METHOD N e = 10°° 10~ 107°
. ITelly a r, Helly a £y Tielly 4 Ty
0 0 0

1 4 5.26E-1 5.70E~1 5.71E-1
8 2.57E~-1 1.0 3.40E-1 0.7 3.41E-1 0.7
16 9.60E-2 1.4 1.83E-1 0.9 1.83E-1 0.9
32 1.79E=-2 2.4 9.40E-2 1.0 9.50E-2 0.9
64 1.88E-4 6.6 4.73E-2 1.0 4.83E-2 1.0
128 1.20E-5 4.0 2.33E-2 1.0 2.43E-2 1.0

2 4 3.16E-1 6.06E-1 6.30E-1
8 1.00E-1 1.7 4.24E-1 0.5 4,53E-1 0.5
16 1.45E-2 2.8 3.58E-2 3.6 3.43E-2 3.7
32 1.97g-3 2.9 9,78E-3 1.9 1.02E-2 1.7
64 1.76E-4 3.5 2.51E-3 2.0 2.66E-3 1.9
128 1.25E-5 3.8 6.09E-4 2.0 6.76E-4 2.0

3 4 5.34E-2 2.84E-2 2.77E-2
8 2.12E=2 l.é 6.52E-3 2.1 6.26E-3 2.1
16 2.45E-3 3.1 8.09E-4 3.0 8.10E-4 3.0
32 1.45E-4 4.1 1.03E~-4 3.0 1.03E-4 3.0
64 8.46E-6 4.1 1.29E-5 3.0 1.30E-5 3.0
128 5.00E-7 4.1 1.61E-6 3.0 1.63E-6 3.0

1p 4 2.74E-2 5.70E-1 5.71E-1
8 1.49E-2 0.9 1.51E-1 1.9 1.52E-1 1.9
16 7.80E:4 4.3 8.41E-6 17.5 9.44E-6 14.0
32 6.76E-5 3.5 2.09E-7 5.3 5.88E-7 4.0

64 4.34E-6 4.0 3.29E-7 -0.7 3.67E-8 4.0 f
128 2,72E=-7 4.0 2.56E-8 3.7 2.29E-9 2.0
Table 7: Error and Order of Convergence for Example 3 Measured on

8y = {-3/4, -1/2, -1/4, 1/4, 1/2, 3/4}.




METHOD N e = 10 % 1074 1078
lle'ﬂh’Ao r, Tle'Hh,Ao ry lle'llh'A0 ry
1 4 1.42E 0 1.71E © 1.71E 0
8 1.36E O 0.1 2.07E O -0.3 2.07E 0 -0.3
16 3.10E-2 5.5 2.38E-4 13.1 5.07e-7 22.0
32 2.78E-2 0.2 4.73E-4 -1.0 1.25g-7 2.0
64 2.00E-2 0.5 6.71E-4. -0.5 6.00E-8 1.1
128 1.39E-3 3.8 7.68E-4 -0.2 5.23E-8 0.2
2 4 1.90E 1 2.79E 3 2.91E 7
8 7.18E 0 1.4 1.18E 3 1.2 1.19e 7 1.3
16 1.48E 0 2.3 3.45E 2 1.8 3.51E 6 1.8
32 1.97E-1 2.9 9.03E 1 1.9 9.26E 5 1.9
64 1.76E-2 3.5 2.26E 1 2.0 2.37E 5 2.0
128 1.26E-3 3.8 5.49E 1 2.0 5.97E 4 2.0
3 4 8.01E-2 5.45E-4 5.39E-8
8 2.31E-1 -1.5 6.04E-4 -0.1 3.69E-8 0.5
16 9.31E-3 4.6 3.75E-6 7.3 0.0
32 8.58E-4 3.4 8.72E-8 5.4 0.0
64 6.02E-5 3.8 4.88E-8 0.8 0.0
128 3.96E-6 3.9 2.45E-8 1.0 0.0
1p 4 2.31E O 1.71E O 1.71E 0O
8 4.16E-1 2.5 2.07E O -0.3 2.07E 9 -0.3
16 4.43E-3 6.6 9.57E-3 7.8 9.55E-3 7.8
32 1.87E-3 1.2 2.00E-3 2.3 2.08E-3 2.2
64 1.12E-4 4.1 8.03E-4 1.3 6.77E-4 1.6
128 7.52E-6 3.9 9.36E-5 3.1 1.90E-4 1.8
Table 8: Error and the Order of Convergence in the Derivative of the
Solution of Example 3 Measured on
by = {~3/4, -1/2, -1/4, 1/4, 1/2, 3/4}.




A = {-1[ -l+h'

-l+2h, .

. -1+Nh = 1}.

N e = 10”2 10”4 1075 1078
TelTnal £ | 18 na 5 |ellnas|® (e, 17
4 5.26E-1 5.70E-1 5.70E-1 5.71E-1
8 2.57E-1 { 1.0 3.40E-1 0.7 3.41E-1 0.7 3.41E-1 0.7
l6 9.60E-2 | 1.4 1.83E-1 0.9 1.83E-1 0.9 1.83E-1 0.9
32 1.81E-2 | 2.4 9.40E-2 1.0 9.50E-2 0.9 9.50E-2 0.9
64 1.91E-4 | 6.6 4.73E-2 1.0 4,83E-2 1.0 4.83E-2 1.0
128 1.22E-5 | 4.0 2.33E-2 | 1.0 2.43E-2 | 1.0 2.43e-2 | 1.0
4 3.16E~-1 6.06E-1 6.25E-1 6.30E-1
8 1.00E-1 | 1.7 4. 24E-1 0.5 4,51E-1 0.5 4.53E-1 0.5
16 1.77-2 | 2.5 2.99E-~1 0.5 3.66E-1 0.3 3.68E-1 0.3
32 2.11E-3 | 3.1 1.82E-1 0.7 3.38E-1 | 0.1 3.42E-1 0.1
64 1.84g-4} 3.5 6.09E-2 1.6 3.20E-1 0.1 3.35E-1 0.0
[ 128 1.31E-5] 3.8 9.39E-3 2.7 2.88E-1 0.2 3.33E-1 0.0
3 4 5.34E-2 9.22E-2 9.29E-2 9.29E=-2
8 2.12E-2 | 1.3 7.25E-3 | 3.7 7.48E-3 | 3.6 7.48E-3 | 3.6
16 5.68E-3 | 1.9 1.52E-2 ]-1.1 8.10E-4 3.2 8.10E-4 3.2
32 3.02E-4 | 4.2 4.19E-2 |-1.5 6.90E-4 0.2 1.03E-4 3.0
64 1.89E-5 | 4.0 1.89E=-2 1.1 2.68E-3 |=-2.0 2.80E-5 | 1.9
128 1.19E-6 | 4.0 1.49E-2 0.3 1.00E-2 |-1.9 1.09E-4 |-2.0
1p 4 2.74E-2 5.70E-1 5.71E-1 5.71E-1
P 8 1.49E-2 | 0.9 4.37E-1 0.4 4.45E~1 0.4 4.45E-1 0.4
16 3.27e-3 | 2.3 1.34E-1 1.7 1.43E-1 1.6 1.43E-1 l.6
32 1.93E-4 | 4.1 2.94E-2 2.2 3.77E-2 1.9 3.78E-2 1.9
: 64 1.33E-5 | 3.9 2.89E-2 0.0 9.50E-3 2.0 9.59E-3 2.0
128 8.28E-~7 | 4.0 8.06E-3 1.8 2.32E-3 2.0 2.41E-3 2.0
Table 9: Error and Order of Convergence for Example 3 Measured on
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Figure

Figure

Figure

Figure

Figure Captions

Canonical basis functions no(s,p) and nl(s,o) on -1 < s <1
for p = 0.01 (Figure la) and p = 10 (Figure 1lb).

Solution of Example 1 using cubic polynomials and
collocation at the Gauss-Legendre points.

Error ||e(h)HA for Example 1 using Methods 1, 2, and
0

3 and measured on the partition 4, = {1/8, 1/4, 3/8,..., 7/8}.

Solutions of Example 1 using Methods 1, 2, and 3 on

4

0 <x < 1/4 for ¢ = 10~ and h = 1/8.

)
Error e(x) and its derivative e (x) in the solution of

Example 1 by Method 1 for € = 107% and h = 1/8. (Note:

! 3
e (0) = -5.76 x 107.)

- L
Error e(x) and its derivative e (x) in the solution of

-4

Example 1 by Method 2 for € = 10 and h = 1/8.

L}
Error e(x) and its derivative e (x) in the solution of
Example 1 by Method 3 for ¢ = 10™% and h = 1/8. (Note:

e (0) = 1.0 x 10%.)
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